Using Analytic QP and Sparseness to Speed Training of Support Vector Machines
نویسنده
چکیده
Training a Support Vector Machine (SVM) requires the solution of a very large quadratic programming (QP) problem. This paper proposes an algorithm for training SVMs: Sequential Minimal Optimization, or SMO. SMO breaks the large QP problem into a series of smallest possible QP problems which are analytically solvable. Thus, SMO does not require a numerical QP library. SMO’s computation time is dominated by evaluation of the kernel, hence kernel optimizations substantially quicken SMO. For the MNIST database, SMO is 1.7 times as fast as PCG chunking; while for the UCI Adult database and linear SVMs, SMO can be 1500 times faster than the PCG chunking algorithm.
منابع مشابه
A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملIdentification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines
In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...
متن کاملSequential minimal optimization: A fast Algorithm for Training Support Vector machines
This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possible QP problems. These small QP problems are solved analytically, which avoids using a time-consu...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملScaling-Up Support Vector Machines Using Boosting Algorithm
In the recent years support vector machines (SVMs) have been successfully applied to solve a large number of classification problems. Training an SVM, usually posed as a quadratic programming (QP) problem, often becomes a challenging task for the large data sets due to the high memory requirements and slow convergence. We propose to apply boosting to Platt’s Sequential Minimal Optimization (SMO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998